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Abstract~The aircraft tire may be treated as a composite shell, owing to its nylon-corded rubber
ply construction. However, its construction is complex: the ply orientation angles, numbers of
plys, ply thicknesses, and even the ply moduli change in the meridional direction (the direction
perpendicular to the "rolling" direction). Moreover, the moduli of the materials used in construction
span several orders of magnitude (isotropic rubber tread, nylon-corded rubber plys, steel bead
wires). These features present a formidable challenge to the use of two-dimensional finite element
codes when representing the behavior in individual plys is desired. In the current work, quasi-three­
dimensional behavior of the tire, including transverse shear warping and thickness stretching, is
generated through the finite element technique. The technique is based on the Jaumann stress
measures, using a local and layer-wise displacement field to describe the behavior of the shell away
from the reference surface. In contrast to stress-resultant models, this technique allows estimation
of stresses and strains in individual plys, including interlaminar shear and peeling stresses. Published
by Elsevier Science Ltd

I. INTRODUCTION

Classical plate and shell theory assumptions, in which it is assumed that normals to the
reference surface remain straight, normal, and of unchanged length after deformation have
proven inadequate for composites owing to the large ratio of elastic modulus to shear
modulus of these materials. An adequate theory must account for transverse shear strains
(Reddy 1984) and, in some cases, for thickness stretching.

In the current work, large displacement and large rotation analyses are undertaken
using a local layer-wise assumed displacement field for modeling transverse behavior (Pai
and Nayfeh 1992). Theories based upon layer-wise 2-D assumed displacement fields provide
background for the present work (Epstein and Glockner, 1977; Epstein and Huttelmaier,
1983 ; Murakami, 1984; Hinrichsen and Palazotto, 1986; Reddy, 1989). The current work
differs most significantly from the cited works in including the transverse normal strain
and stress, and in directly imposing transverse shear and normal stress continuity at ply
interfaces.

The current research depends upon decomposing the displacement field into a stretch
and a rigid body rotation, and measuring the strains along three mutually perpendicular
axes, the directions of which correspond to the rigid rotation of an orthonormal triad
associated with the undeformed geometry. The (local) stresses and strains measured with
respect to the newly oriented triad may be considered local engineering measures, in that
material properties garnered from tensile coupon tests may be immediately introduced into
the constitutive relations without transformation. These local measures are the Jaumann
measures (Fraeijs de Veubeke, 1972; Atluri and Murakawa, 1977; Atluri, 1984; Danielson
and Hodges, 1987), which are resolved along the rigidly displaced and rotated axes. These
measures are local, geometric, directional, and work-conjugate (Pai and Nayfeh, 1994).
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Fig. I. Deformation of an infinitesimal volume element.

2. THEORY

The theory presented in this section is chiefly that of Pai and Palazotto (l995a). The
theory makes use of the polar decomposition method to facilitate the use of a local (and
linear) displacement field at an infinitesimal region of interest in the nonlinearly deforming
body. In the interest of completeness, a brief overview of the theory is presented here.

The Jaumann stress 1mn and strain Bmn are given by (Pai and Palazotto, 1995a)

I ( au au)B =- -.-oi +_oi
mn 2 axm n oxn m

(I a)

(I b)

where the fm are the force resultants on the faces of the deformed parallelepiped (Fig. I).
For example, f) acts on the deformed dx2-dx3 plane. The local displacement vector u of
eqn (I b) is measured with respect to the displaced location of a material point, hence at any
given point on the deformed reference surface, u = 0, though its derivatives (which will
give rise to the strains) are non-zero. As can be seen from eqn (lb), the Jaumann stresses
and strains are defined with respect to the orthogonal directions, denoted by unit vectors
ib associated with the stretched and rigidly rotated volume element (Fig. I (a)). In addition,
these stress measures are associated with undeformed cross-sectional areas.

On the other hand, the second Piola-Kirchhoff stresses Smn and Green's strain Lmn are
defined by (Pai and Palazotto, 1995a)

(2a)

(2b)
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where An is the magnitude of the so-called "lattice vector" (Washizu, 1982), and the
parentheses suspend the tensor summing convention. In the figure, it is seen that the second­
Piola/Green measures are associated with the directions along the deformed (and, in general,
not orthogonal) edges of the element, as shown in Fig. 1(b). The directions of the lattice
vectors correspond to the directions of the unit vectors if{ (note the circumflex on the
subscript). So, in general, the components of the second-Piola stresses are along neither
those of the undeformed coordinate system, as are the Cauchy measures depicted in Fig.
I(c), nor those of its rigidly translated and rotated counterpart in the deformed body (as
are the Jaumann measures). This is a consequence of the Green strains being energy-related
measures (dealing with the change in squared length of a fiber) rather than strictly geometric
measures, like Jaumann or engineering strains. To use the Jaumann measures, which are
local, the effect of rigid body translation and rotation must be removed so that only the
effect of stretching (the source of elastic strain energy) is seen. The means to perform this
are now shown in an example using the polar decomposition method, which explicitly
performs this separation of rigid body and stretching movements, allowing eqn (1 b) to be
formed very quickly. According to Malvern (1969) :

"The fact that the deformation at a point may be considered as the result of a
translation followed by a rotation of the principle axes of strain, and stretches
along the principal axes, was apparently recognized by Thomson and Tait in
1867, but first explicitly stated by Love in 1892."

By way of the polar decomposition, the Green and Jaumann strain measures are now
compared and contrasted using the following (two-dimensional) global displacement field:

(3)

where the Ui are components of displacement, the Xi are the global coordinates of an
undeformed point in the body, a and b are constants, and t represents time. The coordinates
(Y\,Y2) for a material point, originally located at (X\,X2), may then be written as

(4)

The deformation gradient tensor [F] is given by

(5)

where f, is the position vector to the coordinates (y\, Yl) associated with the displaced
location. The polar decomposition (here the decomposition is discussed in the context of
rectangular Cartesian coordinates, but the decomposition may be performed in curvilinear
coordinates as well (see, e.g., Pai and Palazotto (I 995b))) is now employed. The deformation
gradient tensor may be decomposed into the product of two tensors, [R] and [U], where
[R] describes the rigid rotation of the body at a material point, and [U] describes the
material deformation (stretching) at that point:

[F] = [R][U]. (6)

These matrices have some special properties. The matrix [R] is an orthogonal rotation
matrix, that is

(7)

where [I] is the identity matrix and the stretch tensor [U] is symmetric:
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Fig. 2. Deformation of differential area ABeD.

[U]T = [U]. (8)

The Green deformation tensor [C], is defined as (Malvern, 1969) [F]T[F] = [U]2. For any
admissible (i.e., one-to-one) transformation between the Xi and the Yi, [C] is a positive
definite symmetric matrix, and hence may be decomposed as (see, e.g., Strang 1988)

[C] = [U]2 = [Q][A][Q]-I (9)

where [Q] is the matrix of eigenvectors of [C] and [A] is a diagonal matrix having the
eigenvalues of [C] as its members. The matrix [U] may then be written as

(10)

As a numerical example, consider the material point originally at (XI. X2) = (1,1) at time
t = I s, with a = 1 m -I S-I and b = 1 S-I. The deformation of an infinitesimal region near
the point of interest is illustrated in Fig. 2. In the figure, the candidate point is A, and the
undeformed region is described by the square ABeD. This square deforms to ABeD
through the relationships ofeqns (3) and (4). Given the above parameters, the displacement
gradient tensor [F] is given by

[F] = [~ ~J

whose eigenvalues Ai and eigenvectors Qj are

(11 )

{
-0.788205} {-0.615412}

Al = 2.43845. QI = and A2 = 6.56155, Q2 = .
. 0.625412 -0.788205

Hence [A] and [Q] are given by

(12)
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Fig. 3. Step-wise application of the polar decomposition method.

[
2.43845 0 J [-0.788205

[A] = 0 6.56155' [Q] = 0.615412
-0.615412}

-0.788205 '
(13)

and from eqn (10) one obtains

[
1.94029 0.485071J.[U] = [Q][A]-1!2[Q]-1 =

0.485071 2.18282'
(14)

and the rotation tensor is

[
cos8

[R] =
-sin8

sin 8J = [0.970143 0.242536},
cos 8 -0.242536 0.970143

(15)

where 8 = cos- 10.970143 = 14.0362" indicates the clockwise rotation of the j-frame to the
i-frame. A more intuitive view of the polar decomposition may be seen by recognizing its
application as

1. a stretch by the operator U
2. a rigid-body rotation by the operator R
3. and finally a translation to X

Consider vector AB of Fig. 2 as these are applied (Fig. 3(a)). First, the stretch tensor of
eqn (14) is applied to vector AB = {dL,O}:

[
1.94029 0.485071J {dL} = {1.94029dL}

0.485071 2.18282 0 0.485071 dL '
(16)

Then this stretched fiber is rotated by [R] of eqn (15) :

[
0.970143 0.242536J {1.94029dL} = {2dL}.

-0.242536 0.970143 0.485071 dL 0
(17)

Likewise, applying the stretch tensor to vector AD = {O, dL} of Fig. 2 (see Fig. 3(b)) results
m
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[
1.94029

0.485071
0.485071J { 0 } = {0.485071 dL}.
2.18282 dL 2.18282 dL

(18)

Again, this stretched fiber is rotated by [R] of eqn (15) :

[
0.970143 0.242536J {0.485071 dL} = { dL }.

- 0.242536 0.970143 2.18282 dL 2 dL

The Jaumann strain is given by

(19)

[
0.94029

[B] = [U] - [I] = 0.485071
0.485071J.
1.18282

(20)

(While not naming this strain "Jaumann" per se, Malvern (1969) refers to the components
of [B] as "unit extensions" for direct strains referred to herein as B II and Bn and "angle
change" for the shear strain B 12 • He notes that, in the finite deformation case, the so-called
"angle change" is not the geometric angle change, but is dependent upon the stretches, as
will be shown. He attributes his derivation to the works of Truesdell and Toupin (1960)
and Eringen (1967).)

N ate that eqn (20) includes only the elastic stretches at a material point (the rotation
tensor is not present). In comparing this to eqn (l b), it is seen that the stretch tensor is
equivalent to the gradient of the local displacement vector (given by u in eqn I b) in the
rigidly rotated coordinate system denoted by the {i123 }-basis. The Green~Lagrangestrain is
given by (Malvern, 1969)

I [1.5[L] = :;([Uf - [I]) =
" I

(21 )

As an aside, while the tensors [B] and [L] above have different eigenvalues (principal
strains), they have identical principal directions, as they should. The values of the principle
strains are determined by the choice of measure (Jaumann vs Green), while the principle
directions are not. Also note that the transformation between Green~Lagrange and Jau­
mann strains is given by (Pai and Palazotto, 1995b)

[L] = HBj([U] + [I]), (22)

and substituting the results into the above equation will verify the transformation.
A significant disparity between the two strain measures is seen, and the disparity is in

both magnitude and direction. First consider the direct strains.
The Jaumann strain Bn has the direction illustrated in Fig. 2 by the unit vector i 2,

while the Green strain L n is along ii. Now consider the strain magnitudes as they relate to
the "fibers" forming the edges of the infinitesimal area ABeD. In particular, consider fiber
AD which deforms to become AD. In deforming, the fiber has rotated arctan(dL/~dL)
= 26.565 clockwise, and has stretched to a new length of [(2dL)2+dL2t 2 = J5dL,
a physical stretch of 123.6%. Clearly, neither the Jaumann strain, Bn = 1.18282 (from
eqn (20)), nor the Green strain of L 22 = 2 (from eqn (21)) are representing this physical
stretch. The Green strain represents half the change in the squared length of the fiber, i.e.,
~(fi2 - 12

) = 2. The Jaumann strain Bn = 1.18282 represents the projection of the actual
physical stretching of fiber AD onto the direction i2 . This geometric meaning is shown as
follows. Let the physical straining of fiber AD in the engineering strain sense be denoted
by e2 as:
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IIADII-IIADII
e2 =

IIADII
j5dL-dL

dL = 1.23607. (23)

Let the "stretch" of the fiber be defined as the ratio of the deformed length to the original
length, or

UAD = IIADII/IIAD = j5 dx/dx = j5 = 1+e2 = 2.23607. (24)

Now note the "shear" (rotation) angle associated with the '2' direction, denoted /62 in Fig.
2. This angle may be used to find the projection of the stretch UAD onto the i2 direction, Un
as

(25)

where f62 is given by (the geometric interpretation of the angle may be seen in the inset of
Fig. 2)

(26)

Note that the values of UI2 and Un of the right stretch tensor describe the stretching and
rotation due to deformation of the infinitesimal fiber of length dL originally located along
the j2 direction. Likewise, VII and U12 describe the deformation of the fiber originally
located along the jl direction. Finally, the Jaumann strain, Bn , is seen to be

(27)

In the same manner, Bil describes the physical stretching of fiber AB projected onto the i l

direction. Notice that for small shear (COSY62 -> 1) the result yields the engineering strain
result:

(28)

If the additional constraint of small direct strain is enforced, i.e., e2 « 1 it is found that the
Green strain approaches the engineering strain result as well. This may be shown as follows.
The Green strain may be written as (note that E 2 is the lattice vector related to the
deformation of dLj2)

(~+dx)(~-dx)

dx2
(29)

But for small strain, JE 2 • E 2 :::::: dx, leading to

(30)

Examining the shear strains, from eqn (2b) it is seen that the shear strain L I2 is simply
the dot product of the lattice vectors.

(31 )

In general, the lattice vectors are not of unit magnitude, so this strain is not the change in
angle between two originally perpendicular fibers, which for this example is found from the
geometry in Fig. 2 as
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Fig. 4. Geometric interpretation of the Jaumann shear strain, B 12•

dL
tan i'6 = 2 dL = 0.5, or Y6 = 26.565° = 0.46365 radians.

From eqn (20) and the inset of Fig. 2, the Jaumann shear strain B I2 is given by:

(32)

(33)

The first thing noticed is that B l2 = 0.485071 radians is much closer to representing the
actual angle change of i'6 = 0.46365 radians than is L I2 = 1. But why is it different at all?
Consider Fig. 4 which describes the geometry of the problem. In terms of the geometry
shown, the shear strain is given by

From this equation, it is seen that the tensorial strain, 2B 12 , approaches the physical angle
change, i'6, as both of the following are approached: (1) the stretch becomes negligible
(UAS ---> 1, U.w ---> 1) and (2) the shearing angle is small (sin i'61 ---> i'61o sin i'62 ---> i'd. Under
these conditions, the engineering strain result is obtained (see also Malvern, 1969)

(35)

To summarize, while both strain measures asymptotically approach the engineering
strain values as strains become infinitesimal, the Jaumann measures are closely related to
the engineering strains, even for small, but finite, strains. This is an important feature, as it
allows constitutive data from experiments (engineering measures) to be used in the numeri­
cal analysis without transformation (a caveat is in order here: the lack of a need for
transformation between stress measures reflects the use of the nominal or engineering stress
which is referred to the undeformed cross-sectional area of the test specimen. This would
reflect the use of test data at load levels below the ultimate load of the specimen, where
necking of the specimen begins to occur. Beyond this load level, by assuming such plastic
deformation occurs at constant volume, a corrected measure may be employed as shown
by Malvern, 1969).
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Fig. 6. Infinitesimal element undergoing deformation (after Pai and Palazotto, 1995a).

In a layered composite consisting of N layers (Fig. 5), the local displacement vector
(with respect to the local ~'7' coordinate system of Fig. 6) as presented in Pai and Palazotto
(1995a) and based upon the work of Bhimaraddi (1984), Reddy and Liu (1985), Kovarik
(1980) is defined as (see Fig. 7)

(36)

where

uji} = u? (x, y) +z[82(x,y) -8g(x,y)] +}'SZ+o:ji)(X,y)Z2 +{3ji}(X,y)Z3

u~) = ug (x, y) - z[8, (x,y) - 8?(x, y)] + }'4Z+:X~)(x, Y)Z2 + {3~)(X,Y)Z3

u~) = u~(x,y)+o:~)(x,y)z+{3~)(X,Y)Z2. (37)
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Fig. 8. Rigid rotations and shear rotations in an originally undeformed parallelogram; (a) rigid
rotation without shear rotation; (b) rigid rotation with shear rotation.

Here, uJ (j = I, 2, 3) are the components of displacement (with respect to the local coor­
dinate system ~11() of a point which is located on the reference surface at (x, y) before
deformation. The rigid body rotations and shear rotations are given bye and (, respectively.
In Fig. 8, these angles are graphically depicted in the xz plane. Referring to Fig. 8(a), the
angle between the transverse coordinate (z) and the normal to the reference surface in the
undeformed configuration as measured in the xz plane is given bye? The corresponding
angle in the yz plane (not shown) is given by - e~ (the minus sign arises in employing the
right-hand rule for rotation about the x-axis). The shear rotation angle in the xz plam: at
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the reference surface is denoted Ys, and represents the rotation of the normal to the reference
surface due to transverse shear deformation. The corresponding angle in the yz plane is }'4

(the rotation direction for }'4 is chosen such that a positive value of }'4 gives positive
displacement for points above the reference surface hence, unlike 8b its sign remains
positive). At this point, having described the displacements uJ and the rotations 8~, 8i, and
Y" the ingredients are present for the so-called Reissner-Mindlin kinematic (see Reissner,
1945, 1947; Mindlin, 1951): normals to the reference surface may rotate due to shear, but
must remain straight and of unchanged length. This assumption is inappropriate when
dealing with laminated composites. A means is needed of including warping and stretching
of the normal. For this the remaining terms of eqn (37) are used.

These terms, the rtr) and prl , are referred to as shear warping and thickness stretch
functions. These functions are used to describe the kinematic behavior, beyond simple
rotation of the rigid normal, of the material away from the reference surface, and allow
coupling of the displacements U\i l and ug) via the shear angles at the reference surface. That
is, }'4 can affect displacement u)i) through the warping functions and, likewise, Ys can affect
ug). By defining the shear warping functions, G1 and G2 , and the thickness stretch function,
G3 as

the kinematics of eqn (37) may be written as

u)il = u?(x,y)+z[82 (x,y)-8g(x,y»)+G 1

ugJ = ug(x,y) -z[8 1(x,y) -8?(x,y») +G 2

u~) = u~(X,y)+G3' (39)

The coefficients of the shear warping functions are found by enforcing continuity of in­
plane displacements and transverse shear stresses at the ply interfaces. This leads to a piece­
wise continuous transverse shear stress field through the laminate thickness, as shown in
Fig. 9. This figure depicts the transverse stresses in the l6-ply space shuttle nose-wheel tire
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Fig. 9. Transverse shear stresses J" and J" through the thickness of the space shuttle nose wheel
tire near the crown for a unit shear rotation at the reference surface (::; = 0).
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analyzed in subsequent sections. The magnitudes of the stresses are given per unit (l rad)
shear rotation at the reference surface.

Conspicuous by their absence in eqns (37) are the (l ±z/R) terms associated with shell
kinematics. These are the terms that account for the fact that, along a coordinate curve,
normals separated by a finite distance are, in general, not parallel. The kinematics of eqn
(37) neglect the "trapezoidal cross-section" effect, and hence are not "true" shell kinematics.
The differential length subtended by a differential angle dB changes with the thickness
coordinate. This change in length is neglected in the analysis. While greatly simplifying the
formulation, this does introduce an error. The error can be calculated as

(R+6) dB- RdB
e = RdB = 6/R, (40)

where 6 = max {IZN+ Ii, IzIi} is the maximum distance of a fiber from the reference surface
and R is the radius to the reference surface. Clearly, thick, deep shells will suffer the most
error.

At this point, a simplification suggested by Pai and Palazotto (1995a) is performed:
because G3, the stretch in the thickness direction, is usually small, especially for thin shells,
one may neglect G3 and its derivatives in all strain-displacement expressions except in that
of the direct normal strain, B~~. This is based upon the claim that the effect of transverse
normal strain on the in-plane strains is negligible. Under this assumption, the strain­
displacement relations become

.) au
B(l =-"j = G

33 OZ 3 3.z

. au" au"
2B\'~ = -::;-·12 + -::;-" 11

ox oy

= (l +e\) sin Y61 +(l +e2) sin Y62 +z(k6- k~)

+Gl.y+G2.x+ksGI -k4 G2

(4Ia)

(4Ib)

(41c)

(4Id)

(4Ie)

(41f)

where, again, k6 == k61 +k62 and k~ == k~ 1 +k~2'
To characterize a laminated composite made of transversely isotropic (sometimes

called specially orthotropic or cross anisotropic) plys, well known tensor transformations
are used (Whitney, 1987) to obtain the transformed stiffness matrix [Q(i)] for the ith lamina
(see Fig. 5) from its principal stiffness matrix [Q(i)] and its ply angle, which is measured
with respect to the x axis. Note that in this theoretical development, changes in the relative
fiber orientations from ply-to-ply due to deformation are neglected. That is, under the
assumption of a perfect interply bond, the deformation cannot cause the relative angle
between fibers in, for example, the ith ply, to change their orientation relative to the fibers
of the i-I st or i + 1st plies. In actuality, such orientation changes do take place, as
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Fig. 10. Change in orientation of fibers during deformation; (al angle-ply laminate before defor­
mation, (bl after deformation.

illustrated in Fig. 10. In the figure, a two-ply laminated composite is depicted. The "top"
ply has fibers originally oriented 45" to the x-axis, while the "bottom" ply has fibers oriented
at -450 (the fibers of this ply are depicted as dashed lines). During deformation, a
"scissoring" of the fibers takes place due to the stretching of the material in the x-direction.
In the current formulation, such changes in orientation are not accounted for. To account
for such deformation would require tracing the in-plane deformation at each location (in
x,y, and z), and recalculating the constitutive relations based on any changes in the
orientations. In large strain analyses using a Green's strain total-Lagrangian approach,
such as that of Schimmels and Palazotto (1994), expensive transformations of material and
constitutive frames-of-reference are used to follow global changes of fiber orientations.

A transversely isotropic material can be described in terms of five independent elastic
constants:

(42)

The quantities G23 and V23 are related by (Whitney, 1987):

(43)

so either, but not both, may be specified.
The relationship between the Jaumann stresses, J I11", and the Jaumann (or Biot-Cauchy

Jaumann) strains, BI11", for the ith lamina of a transversely isotropic material may then be
written as (for the transformed relationships)

J(i) Q\OI Q(O Q\I), QIO 0 0 B(O
11 12 16 11

J(i) Q\ij Q(O Q(O QIO 0 0 B(O
22 22 23 26 22

J(i) Q\i1 Q~1 Q~1 Q~~ 0 0 B(i)
33 33

(44)
J(i) Q\i~ Q~~ Q(O Q~~ 0 0 2B\"212 36

J(i) 0 0 0 0 Q~~ Q1i1 2B~123

J(i) 0 0 0 0 Q~1 Q~1 2B\i113
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The principle of virtual work, which will be used in the finite element development,
states (Washizu, 1982)

(45)

where II and Wnc denote the elastic energy and the non-conservative energy due to applied
loads (by letting W consist of both conservative and non-conservative forces, eqn (45) is
sometimes referred to as the extended Hamilton principle (Meirovitch, 1967)). The non­
conservative energy includes the energy due to surface loads (distributed or concentrated).

The Jaumann stresses and strains are work conjugate, that is, the elastic energy, II, of
the structure may be entirely accounted for by integrating the product of the stresses and
strains over the entire volume of the structure:

(46)

Or, since [J(i)] = [Q(i)][B(i)] and [Q(i)] is symmetric,

(47)

The first variation of the potential energy is then found through

(48)

where V is the undeformed volume of the shell structure and (i) refers to the value of the
function in the ith layer of the laminate.

To this point, the displacement field has not been approximated, so the expressions
for the elastic energy and its variation could be considered "exact". But in order to
numerically solve the equations, the displacements must be approximated. This is done by
assuming that the displacement field may be represented by polynomial functions (shape
functions) over some finite region (the finite element). Moreover, it is assumed that if the
domain is made up of a sufficient number of such elements, the solution will provide
acceptable results.

Toward this end, the components of {U} are approximated through the choice of a
specific finite element. Using shape functions to discretize the displacements, one obtains

{U,V,W'/4''YSV = [N(r,s)]{qul}, (49)

where {q[j]} is the vector whose members are the nodal displacements of element j, and
[N(r, .1')] is a matrix of two-dimensional finite element shape functions written in terms of
natural coordinates rand s, and given by
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~:
T

0 0 0 0
~1 0 0 0 0
~1 0 0 0 0

0 ~~ 0 0 0
0 ~1 0 0 0
0 ~1 0 0 0
0 0 ~: 0 0
0 0 ~1 0 0
0 0 ~~ 0 0
0 0 0 fill 0
0 0 0 0 fill
~i 0 0 0 0
~~ 0 0 0 0
~~ 0 0 0 0

0 ~i 0 0 0
0 ~~ 0 0 0
0 ~~ 0 0 0
0 0 ~i 0 0
0 0 ~~ 0 0
0 0 ~~ 0 0
0 0 0 fil 2 0
0 0 0 0 fil 2

[N] == ~~ 0 0 0 0 (50)

~~ 0 0 0 0
~~ 0 0 0 0
0 ~~ 0 0 0
0 ~~ 0 0 0
0 ~~ 0 0 0
0 0 ~~ 0 0
0 0 ~~ 0 0
0 0 ~~ 0 0
0 0 0 fil 3 0
0 0 0 0 fil 3

~i 0 0 0 0

~i 0 0 0 0
~j 0 0 0 0

0 ~i 0 0 0
0 ~i 0 0 0
0 ~j 0 0 0
0 0 ~i 0 0
0 0 ~i 0 0
0 0 ~j 0 0
0 0 0 fil4 0
0 0 0 0 fil 4

The shape functions are given by

£7 = 1/8(1 + rk r)(1 +sks)(2+rkr+sks-r2 _S2) (51a)

£~ = (a/8)rk(1 +rkr)2(rkr-l)(1 +SkS) (51 b)
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Fig. II. The 44-DOF shell element.

(5Ic)

(5Id)

where 2a and 2b are dimensions along x and y of the rectangular (in curvilinear coordinates)
element, and the values of rk and Sk are determined by the local coordinates (r, s) of the kth
node.

Again, U, v, and ware displacements relative to the undeformed local curvilinear
system, and }'4 and 15 represent reference surface shear rotation angles in the 1'/-( and ,;-(
planes, respectively, expressed in terms of the global coordinates.

For the present research, a 4-noded, 44 DOF finite element is employed.
Figure 11 shows the four-noded 44 DOF element. The degrees of freedom at each

corner are u, U,." u,Y' V, V,x, v.Y' w, w'x, W.Y' 14, and 15' Hermitian shape functions are used for
all DOF except the transverse shear DOF, 14 and IS, which use bi-linear shape functions.

Employing this finite element leads to equations having the following form. The
formulation of the matrices in these equations is described in detail in the references of Pai
and Palazotto (1995a) and Greer (1996).

and

[Kill] = If [D]T ([,¥O]T [<1>] ['1'0] + [Tn [D] dx dy
44x44 A[11 44x24 24x 12 12x 12 12x24 24x2424x44

(52)

(53)

where [Kill] is the so-called tangent stiffness matrix, and [KII1]{qlll} represents the product of
the (also displacement dependent) stiffness matrix and the current nodal displacements.
Note that the [Kill] of eqn (52) is a symmetric matrix. Furthermore, note that eqn (53)
describes the resultant force vector

(54)

This will be useful for calculations of nodal loads in subsequent sections.
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Fig. 12. Load R acting at a node and its components along the Lagrangian coordinate axes.

3. EXTERNAL LOADS

Using eqn (49) the variation of non-conservative energy due to external loads is

bWnc = SS{bu,bv,bw,br4,b}'s}{Rl,R2,R3'0,OV dxdy

JI fLJl {bqlJ1VlN]T {R], R 2, R 3, 0, O}T dxdy

I {bqlJ1V{RlJJ}
)=1

(55)

where Rb R2, and R3 are distributed external loads along the directions of the axes x, y,
and z, respectively (see Fig. 12). Normal and tangential loads on the shell are most easily
described in terms of these shell curvilinear coordinates. The global structural loading
vector is {R}, and {RlJl} is the elemental nodal loading vector, which is given by

(56)

Here, it is assumed that R b R2 , and R 3 are functions of x and y only and not functions of
displacements u, v, w. Some loading scenarios, such as tire pressurization, may need to be
described in terms of the deformed surface. This is easily handled by applying the load
incrementally.

4. SOLUTION TO INCREMENTAL EQUATIONS

As incremental/iterative Newton-Raphson method is used to solve the nonlinear finite
element equations:

l\/e N e

I ll(lJl]{LlqlJl} = I({RlJJ}-[KlJl]{qlJl}){qIJ1}~{qO}.
)= 1 )~ I

(57)

Again, the asymmetric stiffness matrix [KlJl] need never be formulated, since the product
[KlJl]{qlJl} is a vector described by eqn (53). Hence, in the implementation of the algorithm,
routines for manipulating and storing real symmetric matrices may be employed.

In nonlinear analyses, the solution to eqn (57) is found through an iterative process.
In this iterative process, some sort ofcriterion must be used to determine when the "correct"
solution to the finite element equations has been found. In the finite element literature, such
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criteria are referred as convergence (Owen and Hinton 1980) or, more correctly termination
criteria (Cook et al. 1989). (The word convergence implies certain strict mathematical
properties not satisfied by termination criteria. Furthermore, convergence in the finite
element sense is more properly applied to characteristics of particular finite elements to
provide convergent solutions--a topic of an enormous body of literature that does involve
convergence in the mathematically rigorous sense.)

The criterion used in the current work (Owen and Hinton, 1980; Palazotto and
Dennis, 1992) compares successive displacement solution vectors to quantitatively assess
the "correctness" of the solution. The global displacement solution vector {q} for the i+ 1st
iteration is compared to that of the ith iteration in the current displacement increment as
follows:

(58)

where II {q}!1 is the Euclidean norm of the displacement vector {q} having n elements such
that

II

II{q}11 = I(qJ2.
i= I

(59)

5. THE COMPUTER PROGRAM

The program used for the current analysis is written in FaRTRAN. The length of the
code is approximately 50,000 lines, with the vast majority of the code devoted to developing
the transformation matrix [T] and the deformed curvatures k; needed to update the stiffness
matrices at each iteration of each displacement increment. Much of the code was generated
with the help of Mathematica, the symbolic mathematics software of Wolfram Research,
Inc. The need for using the software became apparent in attempting to form the expressions
for the derivatives required to generate the ['1'0] and [1'] matrices of eqn (52).

The code has been used to analyze isotropic and laminated flat plates and beams,
cylindrical shells and arches, circular toroidal shells and toroidal shells of very general
cross-section. Analyses for shells of multiple curvature (like the toroidal shell) are more
computationally intensive, as the undeformed curvatures change when moving along a
coordinate curve. These curvatures must be calculated at each Gauss point during the
stiffness matrix integration process for each iteration of each displacement increment. In
all analyses, including flat plates, the deformed curvatures must be calculated at each Gauss
point in order to generate the new warping/stretching functions at that point and the
attendant constitutive array, [«1>].

For these analyses, the program was run on the SparcStation 20 workstation. Typical
run times were of the order of five minutes to several hours depending on the application.

6. APPLICATION TO THE AIRCRAFT TIRE

There is a large body of excellent work in the analysis of tires through the use of the
finite element method. Nonetheless, the present research is novel in its combining of a
number of heretofore disparate features: (l) a high-fidelity geometric model of the aniso­
tropic tire is developed entirely with two-dimensional finite elements. (2) This model
incorporates a higher order and layer-wise shear deformation shell theory and includes
thickness stretching. (3) The model includes the effects of large displacements and rotations
(i.e., geometric nonlinearity).

By way ofcomparison, the work of Kim and Noor (1990) incorporated a geometrically
high-fidelity tire model, but not higher order shear nor thickness stretching. Many simplified
models, such as the ring on an elastic foundation or simple shells of revolution (Padovan,
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1975, 1976, 1977; Kennedy and Padovan, 1987; Brockman et al., 1992) have been used for
analytical and finite element dynamic analyses, usually employing the Galilean transform
(Sve and Herrmann, 1974) in concert with traveling load methods. Others have used three­
dimensional finite elements (Kennedy and Padovan, 1987; Brockman et al., 1992; Wu and
Du, 1995) having, to varying degrees, simplified material models. Such simplifications often
take the form of generating single-ply models having "equivalent orthotropic" properties
or just including fewer plies in the model than exist in the actual tire. Others simplify the
finite element itself, as did DeEskinazi et al. (1978), who used flat triangular plate elements
to model the radial tire. Incorporation of the viscoelastic properties of rubber, not included
herein, has also been done using the finite element method (see, e.g., Padovan (1976),
Kennedy and Padovan (1987».

The aircraft tire (Fig. 13) is a toroidal shell of non-circular cross-section. Furthermore,
it may be described as a laminated shell, owing to its corded-rubber ply construction. The
structure is complicated by the presence of bead rings and tread grooves, as well as by the
varying thickness of the cross-section in the meridional direction (throughout this
discussion, "circumferential" refers to the x, or "rolling" direction, while "meridional"
refers to the y, or "minor radius" direction). The thickness, number ofplys, ply orientation,
and constitutive properties all change in the meridional direction.

The two types of mechanical loads on the tire are inflation loads and loads caused by
contact with a surface. Inflation forces are easily described by the "tire pressure", while the
loads due to contact depend on many factors, including aircraft weight, braking, pavement
roughness and flexibility, tire camber, turning loads, etc. The effect of inflation on the tire
is examined herein.

For the finite element model, the generatrix (tire cross-section) for the shell of rev­
olution is represented by a tension spline (Renka, 1987) connecting user-defined nodes
along the cross section. Rotating this generatrix about the origin of the major radius (axle)
of the shell then generates the tire's reference surface. The tension spline is used because,
in addition to having the continuous second derivative of the classical cubic spline (which
results in continuous curvature), it may be formulated to preserve convexity of the curve
over an interval. That is, the tension may be chosen such that the interpolant may not
"wiggle" (have an inflection point) between data points. This results in a smooth generatrix,
making it suitable for modeling the tire cross section (Kim and Noor, 1990). Renka's
technique uses an iterative procedure to satisfy certain user-defined conditions on the
interpolant with the minimum tension, a, necessary. The interested reader is referred to the
reference of Renka (1987) for the details of the algorithm.
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The FORTRAN implementation of this technique downloaded from the world-wide­
web site

http://netlib.att.com/netlib/master/readme.html (60)

provides for calculation of the derivatives of the fitted curve at any point along the curve.

7. THE SHUTTLE TIRE

The nose wheel tire of the Space Transportation System or "Space Shuttle" is examined
in the current research. The tire is modeled as a two-dimensional reference surface, and the
ply thicknesses, ply constitutive relations, and ply orientation angles are allowed to change
from element to element in the meridional direction (elements in the circumferential direc­
tion have identical properties). The tire's construction details are described in the work of
Kim and Noor (1990) whose results are used for comparison purposes in the current
research.

7.1. Inflation
In the current work, a pressure loading is applied using equivalent nodal loads. The

shape functions are used to calculate the applied nodal loads in a potential energy equivalent
sense. That is,

{re } = f [Nf {P} dA
44xl A44x55xl

(61)

where {re } is the vector of equivalent nodal loads for the element, [N] is the matrix of shape
functions (eqn 51), and

{P} = {O, O,Pw, 0, O} (62)

is the pressure loading vector.
The results of the finite element analysis for an inflation pressure of 2.206 MPa (320

psi) are compared to experimental results presented by Kim and Noor (1990) using the
mesh of Fig. 14. The reference surface is chosen to satisfy three criteria: (I) along the
meridian, the reference surface should be as near the middle of the laminate as possible, (2)
the reference surface should be at the middle of the ply in which it resides, and (3) the outer

-------+--------,l:==r-

c:::::=tr- ~ =0.5

Fig. 14. Finite element mesh vs. actual tire cross-section indicating element numbering and typical
element thicknesses.
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Fig. 15. Three views of the shuttle nose wheel tire mesh; the figure does not reflect the fact that the
finite element is actually bi-curved, not flat.

surface of the elements should match that of the actual tire and be as smooth as possible.
Criterion (1) arises from the desire to free the warping functions in the outer plys; the ply
containing the reference surface must be constrained such that the warping functions are
zero at the reference surface. Criterion (2) reflects that fact that as the reference surface
approaches a ply interface, the warping function equations have no unique solution, hence
the middle of the ply is a desirable location (Pai, 1995). The third criterion is desirable from
the standpoint of tire contact studies as, in reality, the outer surface is the contact surface.
In the contact algorithm, the reference surface is used as the contact surface, then corrected
for the thickness of the tire above the reference surface as well as the change in that
thickness. Since the reference surface is continuous and smooth, criterion (3) ensures that
the undeformed tire thickness above the reference surface is nearly uniform about the
meridian.

Trying to satisfy these criteria leads to the element choices depicted in Fig. 14, where
, is the non-dimensionalized meridional coordinate, expressing the fraction of the total
curvilinear length along the meridian of the reference surface. The overall mesh employed
in the inflation study is shown in Fig. 15, where refinement in one area of the mesh
anticipates future work studies of tire contact in that region. The mesh employs 832
elements, 858 nodes, and has 9438 total OOF. The material properties used in the finite
element model are presented in the Appendix. The boundary conditions for the analysis
are given by

aty = 0, clamped: all OOF fixed

at y = 9.13 mm, clamped: all 00F fixed

at y = 16.60mm, clamped: all OOF fixed

at y = 439.29 mm, clamped: all OOF fixed

at y = 446.75 mm, clamped: all OOF fixed

at y = 455.88 mm, clamped: all DOF fixed. (63)

These conditions reflect the fact that the first and last three (circumferential) rows of nodes
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Fig. 16. Tire cross section (not to scale) indicating coordinate system and boundary conditions.
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Fig. 17. Finite element calculations compared to experimental (measured) values for space shuttle
nose-wheel tire. See text for discussion of error bars.

are fixed at the tire/rim interfaces (see Fig. 16). A convergence tolerance of 10-4 % was
used in the analysis, and the inflation loads were applied in six equal increments. The
pressure vector directions were not updated in this portion of the study. The results of the
inflation study are depicted in Fig. 17. The "uncorrected" deflection represents the deflection
of the reference surface, which, ignoring any thickness change, is also the displacement of
the outer surface. The "corrected" data points adjust these displacements for thickness
stretching, t!..h, by numerically integrating the strain, B33 (Z), from the reference surface to
the outer surface at each Gauss point. That is,

(64)

The error bars on the experimental data have two sources: (1) the measured radial dis­
placement at a given meridional location may have slightly different values at different
circumferential locations and the error bars encompass that variation, and (2) precision
error is introduced in reading the graphical data from the plots of the work of Kim and
Noor (1990). In any case, the calculated displacements are clearly less than the experimental
ones. Two possible sources of this difference are (1) any finite element solution should be
somewhat stiffer than its "real" counterpart, and (2) the present analysis models no vis­
coelastic properties. It is likely that the tire material exhibits some "creep" after inflation
and, depending upon when the measurements were taken, these time-dependent properties
may have influenced the result (according to DeEskinazi et al., 1978, the majority of this
creep occurs shortly after inflation).

It is important to recall that the finite element formulation calculates the thickness
stretching based upon the assumption of zero stress at the boundaries. For the tire inflation
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Fig. 18. Finite element stress resultants compared to finite element calculations of Kim and Noor
(l990) .

problem, this assumption is patently false. However, the thickness change calculated by the
model, generated by the membrane stretching due to application of equivalent nodal loads,
provides good results in predicting the displaced outer surface of the tire.

Stress resultants for the finite element results are calculated by integrating the stresses
through the thickness:

f
ZN11

N~ =" J 11 (z) dz,
" 1

(65a)

f
Z,V+1

N vz =" J23 (z)dz.
" I

(65b)

They are then nondimensionalized by dividing by the inflation pressure, Po = 2.206 MPa
(320 psi), and the tire thickness at the crown, ho = 19.05 mm (0.75 in). The resultants
generated by the finite element model are shown in Fig. 18. They are compared with the
results of the finite element model of Kim and Noor (1990), who used a semi-analytic finite
element model employing moderate-rotation Sanders-Budiansky shell theory and having
the following properties: (I) the shell variables are represented by Fourier series in the
circumferential direction and piecewise polynomials in the meridional direction, and (2)
the fundamental unknowns in the model are strain-resultant parameters, stress-resultant
parameters, and generalized displacements. The line thickness in the plot reflects the impre­
cision in reading the graphical data. As stress-resultants are a fundamental unknown in
the model, it is likely that the values of Kim and Noor in Fig. 18 are more reliable than
those of the present research, in which the stresses are tertiary quantities calculated from
strains generated by displacements. Still, the agreement between solutions is good, except
near the tire/rim interface. In this region, the element thicknesses are changing rapidly,
causing erratic results. This is due to the discontinuity introduced by having different ply
lay-ups adjacent to each other at nodes. Consider Fig. 19, which depicts the effect of this
difference. Recall that the displacements away from the shell reference surface are deter­
mined by enforcing stress and displacement continuity at interlaminar boundaries. There­
fore, the element configuration (number, angles, thicknesses, and constitutive properties of
the plys) and the displacements at the reference surface uniquely determine the values of
these through-the-thickness displacements. If two adjacent elements have identical con­
figurations (Case (A) -7 (B) of Fig. 19), then the displacement conditions at their common
node(s) on the reference surface will determine the displacements away from the reference
surface at the node. Furthermore, these displacements will be identical at the node whether
it is approached from the element on the left or the right. On the contrary, if the adjacent
elements have different configurations (Case (C) -7 (D) of Fig. 19) then, while the dis­
placements at the common node(s) on the reference surface are unique, the difference in
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Fig. 19. Discontinuity introduced by adjacent elements of different ply lay-up; Case (A) ~ (B) :
adjacent elements of identical configuration; Case (C) ~(D): adjacent elements of different con­

figuration.

Table I. Maximum stresses and strains due to inflation of the shuttle tire model without pressure direction updates

Component (ij) II 22 33 12 23 13
Stress Jij (MPa) 36.91 27.76 4.022 27.428 -0.5976 0.2121
Occurs in element 16 10 3 10 10 II
Distance from ref. sfc -0.8255 -0.5135 -15.93 -0.5135 0.5135 0.0
(z mm)
Strain Hi; (%) 4.131 23.642 -55.25 -1.696 -25.01 13.212
Occurs in element 16 16 16 3 12 10
Distance from ref. sfc + 7.247 + 7.247 +4.128 -18.41 -0.5745 -0.5135
(z mm)

element configuration will cause a mismatch in the displacement functions through-the­
thickness. The effect of the mis-match is to cause a discontinuity in the strain energy
along interelement boundaries (since integration through the thickness is included in that
calculation). In qualitative terms, it should be clear that very gradual changes in element
properties are more desirable than sudden ones.

The peak stresses in the inflated tire are noted in Table I. The element numbers in the
table correspond to those used in Fig. 14. The largest strains in Table I are located in the
outer ply which is isotropic rubber. It has a modulus roughly two orders of magnitude less
than that of the nylon-corded rubber of the other plys. The maximum transverse normal
strain of B33max = - 55% is large, but is on the order of that seen by Simo et al. (1990) in
finite element modeling of a transversely loaded rubber sphere. In that instance, strains of
55% were seen.

Another source of the erratic results near the tire/wheel interface is that the current
(displacement based) model imposes a fully-clamped boundary condition at the rim, while
the stress-resultant parameters used by Kim and Noor (1990) permit non-zero stresses in
the interface region. In this displacement-based scheme, the setting of the displacements in
the clamped regions to zero has the result of setting strains to zero and therefore stresses
to zero. In contrast, when stress-resultant parameters are used as fundamental unknowns
(as opposed to a derived quantity) they need not be a priori set to zero along a clamped
boundary.

8. CONCLUSION

The complex geometry of the tire presents a formidable challenge to describing its
behavior with two-dimensional finite elements. In this paper, a two-dimensional finite
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element model which includes both layer-wise higher-order transverse shear and thickness
stretching is applied to the space shuttle nose gear tire. The two-dimensional element
successfully generates a quasi-three-dimensional response through: (1) representation of
the reference surface by the tension spline technique, (2) modeling the continuously changing
(in the meridional direction) properties of the tire with a discontinuously changing finite
element representation of the tire, (3) modeling behavior away from the reference surface
through layer-wise polynomial representations of shear warping and thickness stretching,
and (4) applying inflation loads at nodes on the reference surface using equivalent nodal
loads. Despite the fact that the thickness stretch functions assume no normal stresses on
the inner surface of the tire, the inflated tire profile, corrected for thickness stretch, represents
the measured profile of Kim and Noor (1990) well. Current and future work will investigate
tire contact using this model, including both static footprint and dynamic (rolling) cases.
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APPENDIX: MATERIAL PROPERTIES

This appendix lists the material properties used in the finite element inflation problem. The following
conventions are employed:

I. Ply numbering is from bottom (inner surface) to top (outer surface)
2. Angle (J is measured from the x (circumferential) axis
3. Coordinate z represents the location of the bottom of the ith ply (z,). and coordinate Zl represents the

location of the top of the ply (z;+ I)'
4. The element configuration numbers describe the configuration for an entire (circumferential) row of

elements, numbered from the tire/rim interface to the crown. For example, element configuration 16 is the
configuration for the two rows of elements at the tire crown (see Fig. 14).

Calculations of the various material properties were based upon the data provided in the reference by Kim and
Noor (1990), which contains a very complete description of the material properties and geometry of this tire

A comment is in order regarding the Poisson's ratio used for nylon-corded rubber properties. As pointed out
by Brockman et £II. (1992). the Poisson's ratio of the nylon cord reflects its structural behavior in tension: that of
twisting as well as contraction (Clark, 1981). In light of this, the fact that the values exceed the theoretical limit
of Ij2 should not be considered unusual.

Element configuration I (( = 0.5, the tire/rim interface)
ply IF' Z Zl t Ell E22 E3J Vl2 VD 1.'13 G I2 G23 Gil

I 0.0 -39.89 -36.93 2.96 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0
2 -51.0 -36.93 -35.83 1.1 469.2 5.3 5.3 0.523 0.66 0.523 1.3 0.8 1.3
3 51.0 -35.83 -34.73 1.1 469.2 5.3 5.3 0.523 0.66 0.523 1.3 0.8 1.3
4 -57.0 -34.73 -33.2 1.53 424.2 5.1 5.1 0.52 0.66 0.52 1.3 0.8 1.3
5 57.0 -33.2 - 31.67 1.53 424.2 5.1 5.1 0.52 0.66 0.52 1.3 0.8 1.3
6 0.0 - 31.67 -25.4 6.27 2 x 105 2x 105 2 X 105 0.3 0.3 0.3 76900.0 76900.0 76900.0
7 57.0 -25.4 -23.87 1.54 424.2 5.1 5.1 0.52 0.66 0.52 1.3 0.8 1.3
8 -57.0 - 23.87 -22.33 1.53 424.2 5.1 5.J 0.52 0.66 0.52 1.3 0.8 1.3
9 57.0 - 22.33 -20.8 1.53 424.2 5.1 5.1 0.52 0.66 0.52 1.3 0.8 1.3

10 -57.0 -20.8 -19.27 1.53 424.2 5.1 5.1 0.52 0.66 0.52 1.3 0.8 1.3
JI 0.0 -19.27 -13.0 6.27 2 x 105 2x 105 2x 105 0.3 0.3 0.3 76900.0 76900.0 76900.0
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12 -57.0 -13.0 ~ 11.46 1.53 424.2 5.1 5.1 0.52 0.66 0.52 1.3 0.8 1.3
13 57.0 -11.46 -9.93 1.53 424.2 5.1 5.1 0.52 0.66 0.52 1.3 0.8 1.3
14 -57.0 -9.93 -7.77 2.16 301.9 4.4 4.4 0.511 0.66 0.511 1.2 0.7 1.2
15 57.0 -7.77 -5.61 2.16 301.9 4.4 4.4 0.511 0.66 0.511 1.2 0.7 1.2
16 0.0 -5.61 5.61 11.21 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0

Element configuration 2
ply (i ~ 2 1 t E,l E22 E3] Vl 2 Vn Vl3 Gl2 G" G13

1 0.0 -26.63 -23.75 2.88 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0
2 -51.0 -23.75 -22.76 0.99 518.0 5.6 5.6 0.526 0.66 0.526 1.4 0.8 1.4
3 51.0 -22.76 -21.76 0.99 518.0 5.6 5.6 0.526 0.66 0.526 1.4 0.8 1.4
4 -57.0 -21.76 -20.38 1.39 4682 5.3 5.3 0.523 0.66 0.523 1.3 0.8 1.3
5 57.0 -20.38 -18.98 1.39 468.2 5.3 5.3 0.523 0.66 0.523 1.3 0.8 1.3
6 0.0 -18.98 -13.31 5.67 2x 105 2 X 105 2 X 105 0.3 0.3 0.3 76900.0 76900.0 76900.0
7 57.0 -13.31 - 11.92 1.39 468.2 5.3 5.3 0.523 0.66 0.523 1.3 0.8 1.3
8 -57.0 - 11.92 -10.53 1.39 468.2 5.3 5.3 0.523 0.66 0.523 1.3 0.8 1.3
9 57.0 -10.53 -9.15 1.39 468.2 5.3 5.3 0.523 0.66 0.523 1.3 0.8 1.3

10 -57.0 -9.15 -7.76 1.39 468.2 5.3 5.3 0.523 0.66 0.523 1.3 0.8 1.3
11 0.0 -7.76 -2.08 5.67 2 x 10' 2 X 105 2x 105 0.3 0.3 0.3 76900.0 76900.0 76900.0
12 -57.0 -2.08 -0.69 1.39 468.2 5.3 5.3 0.523 0.66 0.523 1.3 0.8 1.3
13 57.0 -0.69 0.69 1.39 468.2 5.3 5.3 0.523 0.66 0.523 1.3 0.8 1.3
14 -57.0 0.69 2.65 1.96 333.2 4.6 4.6 0.513 0.66 0.513 1.2 0.7 1.2
15 57.0 2.65 4.61 1.96 333.2 4.6 4.6 0.513 0.66 0.513 1.2 0.7 1.2
16 0.0 4.61 8.47 3.86 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0

Element configuration 3
ply 0' ~ ':1 t Ell E22 Ell ).'12 V23 Vl3 Gl2 G" GI)

I 0.0 -18.41 -15.93 2.48 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0
2 -51.0 -15.93 -14.8 1.13 456.3 5.2 5.2 0.522 0.66 0.522 1.3 0.8 1.3
3 51.0 -14.8 -13.68 1.13 456.3 5.2 5.2 0.522 0.66 0.522 1.3 0.8 1.3
4 -57.0 -13.68 -12.07 1.61 433.3 5.1 5.1 0.52 0.66 0.52 1.3 0.8 1.3
5 57.0 -12.07 -10.46 1.61 433.3 5.1 5.1 0.52 0.66 0.52 1.3 0.8 1.3
6 57.0 -10.46 -8.85 1.61 433.3 5.1 5.1 0.52 0.66 0.52 1.3 0.8 1.3
7 -57.0 -8.85 -7.24 1.61 433.3 5.1 5.1 0.52 0.66 0.52 1.3 0.8 1.3
8 57.0 -7.24 -5.63 1.61 433.3 5.1 5.1 0.52 0.66 0.52 1.3 0.8 1.3
9 -57.0 -5.63 -4.02 1.61 433.3 5.1 5.1 0.52 0.66 0.52 1.3 0.8 1.3

10 57.0 -4.02 -2.41 1.61 433.3 5.1 5.1 0.52 0.66 0.52 1.3 0.8 1.3
11 -57.0 -2.41 -0.8 1.61 433.3 5.1 5.1 0.52 0.66 0.52 1.3 0.8 1.3
12 57.0 -0.8 0.8 1.61 433.3 5.1 5.1 0.52 0.66 0.52 1.3 0.8 1.3
13 -57.0 0.8 2.41 1.61 433.3 5.1 5.1 0.52 0.66 0.52 1.3 0.8 1.3
14 -57.0 2.41 4.51 2.1 311.2 4.5 4.5 0.512 0.66 0.512 1.2 0.7 1.2
15 57.0 4.51 6.61 2.1 311.2 4.5 4.5 0.512 0.66 0.512 1.2 0.7 1.2
16 0.0 6.61 8.49 1.88 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0

Element configuration 4
ply B ~ Zl t Ell E22 E" Vl 2 "'23 V13 G I2 G23 Gil

1 0.0 -16.08 -13.92 2.16 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0
2 -51.0 -13.92 -12.94 0.98 522.2 5.6 5.6 0.527 0.66 0.527 1.4 0.8 1.4
3 51.0 - 12.94 -11.95 0.98 522.7 5.6 5.6 0.527 0.66 0.527 1.4 0.8 1.4
4 -57.0 -11.95 -10.54 1.41 495.4 5.5 5.5 0.525 0.66 0.525 1.4 0.8 1.4
5 57.0 -10.54 -9.14 1.41 495.4 5.5 5.5 0.525 0.66 0.525 1.4 0.8 1.4
6 57.0 -9.14 -7.73 1.41 495.4 5.5 5.5 0.525 0.66 0.525 1.4 0.8 1.4
7 -57.0 -7.73 -6.33 1.41 495.4 5.5 5.5 0.525 0.66 0.525 1.4 0.8 1.4
8 57.0 -6.33 -4.92 1.41 495.4 5.5 5.5 0.525 0.66 0.525 1.4 0.8 1.4
9 -57.0 -4.92 -3.52 1.41 495.4 5.5 5.5 0.525 0.66 0.525 1.4 0.8 1.4

10 57.0 -3.52 -2.11 1.41 495.2 5.5 5.5 0.525 0.66 0.525 1.4 0.8 1.4
11 -57.0 -2.11 -0.7 1.41 495.4 5.5 5.5 0.525 0.66 0.525 1.4 0.8 1.4
12 57.0 -0.7 0.7 1.41 495.4 5.5 5.5 0.525 0.66 0.525 1.4 0.8 1.4
13 -57.0 0.7 2.11 1.41 495.4 5.5 5.5 0.525 0.66 0.525 1.4 0.8 1.4
14 -57.0 2.11 3.94 1.83 355.9 4.7 4.7 0.515 0.66 0.515 1.3 0.8 1.3
15 57.0 3.94 5.77 1.83 355.9 4.7 4.7 0.515 0.66 0.515 1.3 0.8 1.3
16 0.0 5.77 7.92 2.15 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0

Element configuration 5
ply B ~ 2 1 1 Ell E22 E" \i 12 ).'23 V IJ Gl2 G" G13

1 0.0 -12.54 -10.7 1.84 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0
2 -51.0 -10.7 -9.86 0.84 610.6 6.2 6.2 0.533 0.66 0.533 1.4 0.9 1.4
3 51.0 ~9.86 -9.02 0.84 610.6 6.2 6.2 0.533 0.66 0.533 1.4 0.9 1.4
4 -57.0 -9.02 -7.81 1.2 578.9 6.0 6.0 0.531 0.66 0.531 1.4 0.9 1.4
5 57.0 -7.81 -6.61 1.2 579.0 6.0 6.0 0.531 0.66 0.531 1.4 0.9 1.4
6 57.0 -6.61 - 5.41 1.2 578.9 6.0 6.0 0.531 0.66 0.531 1.4 0.9 1.4
7 -57.0 -5.41 -4.21 1.2 578.9 6.0 6.0 0.531 0.66 0.531 1.4 0.9 1.4
8 57.0 -4.21 -3.01 1.2 578.9 6.0 6.0 0.531 0.66 0.531 1.4 0.9 1.4
9 -57.0 -3.01 -1.8 1.2 578.9 6.0 6.0 0.53l 0.66 0.531 1.4 0.9 1.4

10 57.0 -1.8 -0.6 1.2 578.8 6.0 6.0 0.531 0.66 0.531 1.4 0.9 1.4
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II -57.0 -0.6 0.6 1.2 578.9 6.0 6.0 0.531 0.66 0.531 1.4 0.9 1.4
12 57.0 0.6 1.8 1.2 578.9 6.0 6.0 0.531 0.66 0.531 1.4 0.9 1.4
13 -57.0 1.8 3.0 1.2 578.9 6.0 6.0 0.531 0.66 0.531 1.4 0.9 1.4
14 -57.0 3.0 4.57 1.57 415.9 5.0 5.0 0.519 0.66 0.519 1.3 0.8 l.3
15 57.0 4.57 6.13 1.56 415.9 5.0 5.0 0.519 0.66 0.519 1.3 0.8 I.:
16 0.0 6.13 7.66 1.53 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0

Element configuration 6
ply fJ' Z ZI t Ell E22 EJ3 Vl2 V23 V\3 G12 Gn Gil

I 0.0 -8.63 -7.11 1.52 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0
2 -51.0 -7.11 -6.33 0.78 691.0 6.8 6.8 0.539 0.66 0.539 1.5 0.9 1.5
3 51.0 -6.33 -5.56 0.78 691.9 6.8 6.8 0.539 0.66 0.539 1.5 0.9 1.5
4 -57.0 -5.56 -4.55 1.01 734.1 7.1 7.1 0.542 0.66 0.542 1.5 0.9 1.5
5 57.0 -4.55 -3.54 1.01 734.1 7.1 7.1 0.542 0.66 0.542 1.5 0.9 1.5
6 -57.0 -3.54 -2.52 1.01 733.8 7.1 7.1 0.542 0.66 0.542 1.5 0.9 1.5
7 57.0 -2.52 -1.52 1.01 734.1 7.1 7.1 0.542 0.66 0.542 1.5 0.9 1.5
8 -57.0 -1.52 -0.51 1.01 734.1 7.1 7.1 0.542 0.66 0.542 1.5 0.9 1.5
9 57.0 -0.51 0.51 1.01 734.1 7.1 7.1 0.542 0.66 0.542 1.5 0.9 1.5

10 57.0 0.51 1.52 1.01 734.1 7.1 7.1 0.542 0.66 0.542 1.5 0.9 1.5
11 -57.0 1.52 2.52 1.01 734.1 7.1 7.1 0.542 0.66 0.542 1.5 0.9 1.5
12 -57.0 2.52 4.18 1.66 392.7 4.9 4.9 0.518 0.66 0.518 1.3 0.8 1.3
13 57.0 4.18 5.84 1.66 392.7 4.9 4.9 0.518 0.66 0.518 1.3 0.8 1.3
14 0.0 5.84 7.97 2.13 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0

Element configuration 7
ply ee Z ZI t Ell En E33 Vl2 "'23 Vl3 GI2 G23 Gl3

I 0.0 -6.05 -4.53 1.52 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0
2 -47.6 -4.53 -3.81 0.72 795.5 7.6 7.6 0.546 0.66 0.546 1.6 1.0 1.6
3 47.6 -3.81 -3.09 0.72 795.5 7.6 7.6 0.546 0.66 0.546 1.6 1.0 1.6
4 -53.6 -3.09 -2.21 0.88 891.0 8.5 8.5 0.553 0.66 0.553 1.7 1.0 1.7
5 53.6 -2.21 -1.33 0.88 891.0 8.5 8.5 0.553 0.66 0.553 1.7 1.0 1.7
6 -53.6 -1.33 -0.44 0.88 891.0 8.5 8.5 0.553 0.66 0.553 1.7 1.0 1.7
7 53.6 -0.44 0.44 0.88 891.0 8.5 8.5 0.553 0.66 0.553 1.7 1.0 1.7
8 -53.6 0.44 1.33 0.88 891.0 8.5 8.5 0.553 0.66 0.553 1.7 1.0 1.7
9 53.6 1.33 2.21 0.88 891.0 8.5 8.5 0.553 0.66 0.553 1.7 1.0 1.7

10 - 53.6 2.21 3.64 1.44 549.4 5.8 5.8 0.529 0.66 0.529 1.4 0.8 1.4
11 -53.6 3.64 5.08 1.44 453.0 5.2 5.2 0.522 0.66 0.522 1.3 0.8 1.3
12 53.6 5.08 6.52 1.44 453.0 5.2 5.2 0.522 0.66 0.522 1.3 0.8 1.3
13 0.0 6.52 7.85 1.33 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0

Element configuration 8
ply e" z z\ t Ell En E" Vl 2 "'23 V13 Gil Gn Gl3

1 0.0 -4.49 -2.97 1.52 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0
2 -46.5 -2.97 -2.23 0.74 808.3 7.7 7.7 0.547 0.66 0.547 1.6 1.0 1.6
3 46.5 -2.23 -1.5 0.74 808.3 7.7 7.7 0.547 0.66 0.547 1.6 1.0 1.6
4 -50.5 -1.5 -0.5 1.0 881.0 8.4 8.4 0.552 0.66 0.552 1.7 1.0 1.7
5 50.5 -0.5 0.5 1.0 881.0 8.4 8.4 0.552 0.66 0.552 1.7 1.0 1.7
6 -50.5 0.5 1.5 1.0 881.0 8.4 8.4 0.552 0.66 0.552 1.7 1.0 1.7
7 50.5 1.5 2.5 1.0 881.0 8.4 8.4 0.552 0.66 0.552 1.7 1.0 17
8 -50.5 2.5 3.5 1.0 881.0 8.4 8.4 0.552 0.66 0.552 1.7 1.0 1.7
9 50.5 3.5 4.49 1.0 881.0 8.4 8.4 0.552 0.66 0.552 1.7 1.0 1.7

10 -50.5 4.49 5.79 1.3 500.4 5.5 5.5 0.525 0.66 0.525 1.4 0.8 1.4
11 50.5 5.79 7.09 1.3 500.4 5.5 5.5 0.525 0.66 0.525 1.4 0.8 1.4
12 0.0 7.09 8.41 1.31 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0

Element configuration 9
ply eo Z z, t Ell E22 E,l "'12 "'23 v13 Gil Gn Gl3

I 0.0 -4.44 -2.92 1.52 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0
2 -41.5 -2.92 -2.2 0.72 821.7 7.9 7.9 0.548 0.66 0.548 1.6 1.0 1.6
3 41.5 -2.2 -1.47 0.72 821.7 7.9 7.9 0.548 0.66 0.548 1.6 1.0 1.6
4 -47.5 -1.47 -0.49 0.98 895.8 8.5 8.5 0.553 0.66 0.553 1.7 1.0 1.7
5 47.5 -0.49 0.49 0.98 895.8 8.5 8.5 0.553 0.66 0.553 1.7 1.0 1.7
6 -47.5 0.49 1.47 0.98 895.9 8.5 8.5 0.553 0.66 0.553 1.7 1.0 1.7
7 47.5 1.47 2.46 0.98 895.7 8.5 8.5 0.553 0.66 0.553 1.7 1.0 1.7
8 -47.5 2.46 3.44 0.98 895.8 8.5 8.5 0.553 0.66 0.553 1.7 1.0 1.7
9 47.5 3.44 4.42 0.98 895.8 8.5 8.5 0.553 0.66 0.553 1.7 1.0 1.7

10 -47.5 4.42 5.7 1.28 509.0 5.6 5.6 0.526 0.66 0.526 1.4 0.8 1.4
11 47.5 5.7 6.97 1.28 509.0 5.6 5.6 0.526 0.66 0.526 1.4 0.8 1.4
12 0.0 6.97 7.86 0.88 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0

Element configuration 10
ply ee Z ZI t Ell En En V12 "23 V13 GI2 G2l Gl3

I 0.0 -4.5 -2.98 1.52 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0
2 -39.1 -2.98 -2.26 0.72 892.8 8.5 8.5 0.553 0.66 0.553 1.7 1.0 1.7
3 39.1 -2.26 -1.54 0.72 892.8 8.5 8.5 0.553 0.66 0.553 1.7 1.0 'i.7
4 -45.1 -1.54 -0.51 1.03 924.2 8.8 8.8 0.555 0.66 0.555 1.7 1.0 1.7
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5 45.1 -0.51 0.51 1.03 924.2 8.8 8.8 0.555 0.66 0.555 1.7 1.0 1.7
6 -45.1 0.51 1.54 1.03 924.2 8.8 8.8 0.555 0.66 0.555 1.7 1.0 1.7
7 45.1 1.54 2.57 1.03 924.2 8.8 8.8 0.555 0.66 0.555 1.7 1.0 1.7
8 -45.1 2.57 3.59 1.03 924.2 8.8 8.8 0.555 0.66 0.555 1.7 1.0 1.7
9 45.1 3.59 4.62 1.03 924.2 8.8 8.8 0.555 0.66 0.555 1.7 1.0 1.7

10 -45.1 4.62 5.96 1.34 556.1 5.9 5.9 0.529 0.66 0.529 1.4 0.8 1.4
11 45.1 5.96 7.29 1.34 556.1 5.9 5.9 0.529 0.66 0.529 1.4 0.8 1.4
12 0.0 7.29 8.1 0.81 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0

Element configuration 11
ply eo :: Zl t E" E" E3l Vl2 V23 Vu G'2 G23 G13

1 0.0 -5.77 -4.24 1.52 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0
2 -36.7 -4.24 -3.48 0.76 842.9 8.1 8.1 0.549 0.66 0.549 1.6 1.0 1.6
3 36.7 - 3.48 -2.72 0.76 842.9 8.1 8.1 0.549 0.66 0.549 1.6 1.0 1.6
4 -42.7 -2.72 -1.63 1.09 872.5 8.3 8.3 0.551 0.66 0.551 1.7 1.0 1.7
5 42.7 -1.63 -0.54 1.09 872.5 8.3 8.3 0.551 0.66 0.551 1.7 1.0 1.7
6 -42.7 -0.54 0.54 1.09 872.5 8.3 8.3 0.551 0.66 0.551 1.7 1.0 1.7
7 42.7 0.54 1.63 1.09 872.5 8.3 8.3 0.551 0.66 0.551 1.7 1.0 1.7
8 -42.7 0.63 2.72 1.09 872.5 8.3 8.3 0.551 0.66 0.551 1.7 1.0 1.7
9 42.7 2.72 3.81 1.09 872.5 8.3 8.3 0.551 0.66 0.551 1.7 1.0 1.7

10 -42.7 3.81 5.22 1.41 525.2 5.7 5.7 0.527 0.66 0.527 1.4 0.8 1.4
11 42.7 5.22 6.64 1.41 525.2 5.7 5.7 0.527 0.66 0.527 1.4 0.8 1.4
12 0.0 6.64 8.04 1.4 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0

Element configuration 12
ply e" :: z\ t E" E" E]3 ),'12 V23 V13 G12 G2J G13

1 0.0 -7.15 -5.63 1.52 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0
2 -34.3 -5.63 -4.83 0.8 798.0 7.7 7.7 0.546 0.66 0.546 1.6 1.0 1.6
3 34.3 -4.83 -4.02 0.8 798.0 7.7 7.7 0.546 0.66 0.546 1.6 1.0 1.6
4 -40.3 -4.02 -2.87 1.15 826.4 7.9 7.9 0.548 0.66 0.548 1.6 1.0 1.6
5 40.3 -2.87 -1.72 1.15 826.6 7.9 7.9 0.548 0.66 0.548 1.6 1.0 1.6
6 -40.3 -1.72 -0.57 1.15 826.4 7.9 7.9 0.548 0.66 0.548 1.6 1.0 1.6
7 40.3 -0.57 0.57 1.15 826.4 7.9 7.9 0.548 0.66 0.548 1.6 1.0 1.6
8 -40.3 0.57 1.72 1.15 826.4 7.9 7.9 0.548 0.66 0.548 1.6 1.0 1.6
9 40.3 1.72 2.87 1.15 826.4 7.9 7.9 0.548 0.66 0.548 1.6 1.0 1.6

10 -40.3 2.87 4.37 1.49 497.6 5.5 5.5 0.525 0.66 0.525 1.4 0.8 1.4
11 40.3 4.37 5.86 1.49 497.6 5.5 5.5 0.525 0.66 0.525 1.4 0.8 1.4
12 0.0 5.86 8.05 2.19 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0

Element configuration 13
ply eo :: Zl t E" E22 E" "'12 V 23 Vl3 G" G2J G13

1 0.0 -8.66 -7.14 1.52 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0
2 -32.4 -7.14 -6.29 0.85 758.5 7.3 7.3 0.543 0.66 0.543 1.6 0.9 1.6
3 32.4 -6.29 -5.45 0.85 757.6 7.3 7.3 0.543 0.66 0.543 1.6 0.9 1.6
4 -38.4 -5.45 -4.24 1.21 784.9 7.5 7.5 0.545 0.66 0.545 1.6 1.0 1.6
5 38.4 -4.24 -3.02 1.21 784.9 7.5 7.5 0.545 0.66 0.545 1.6 1.0 1.6
6 -38.4 -3.02 -1.81 1.21 784.9 7.5 7.5 0.545 0.66 0.545 1.6 1.0 1.6
7 38.4 -1.81 -0.6 1.21 784.9 7.5 7.5 0.545 0.66 0.545 1.6 1.0 1.6
8 -38.4 -0.6 0.6 1.21 784.9 7.5 7.5 0.545 0.66 0.545 1.6 1.0 1.6
9 38.4 0.6 1.81 1.21 784.9 7.5 7.5 0.545 0.66 0.545 1.6 1.0 1.6

10 -38.4 1.81 3.39 1.57 472.8 5.3 5.3 0.523 0.66 0.523 1.3 0.8 1.3
11 38.4 3.39 4.96 1.57 472.8 5.3 5.3 0.523 0.66 0.523 1.3 0.8 1.3
12 0.0 4.96 7.84 2.88 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0

Element configuration 14
ply eo z ::, t E" E" E,l v12 )..'23 "13 G12 G2J G13

1 0.0 -10.29 -8.77 1.52 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0
2 -31.2 -8.77 -7.88 0.89 774.3 7.5 7.5 0.544 0.66 0.544 1.6 0.9 1.6
3 31.2 -7.88 -6.99 0.89 773.4 7.4 7.4 0.544 0.66 0.544 1.6 0.9 1.6
4 -37.2 -6.99 -5.72 1.27 801.8 7.7 7.7 0.546 0.66 0.546 1.6 1.0 1.6
5 37.2 -5.72 -4.45 1.27 801.8 7.7 7.7 0.546 0.66 0.546 1.6 1.0 1.6
6 -37.2 -4.45 -3.18 1.27 801.8 7.7 7.7 0.546 0.66 0.546 1.6 1.0 1.6
7 37.2 -3.18 -1.91 1.27 802.0 7.7 7.7 0.546 0.66 0.546 1.6 1.0 1.6
8 -37.2 -1.91 -0.64 1.27 801.5 7.7 7.7 0.546 0.66 0.546 1.6 1.0 1.6
9 37.2 -0.64 0.64 1.27 8020 7.7 7.7 0.546 0.66 0.546 1.6 1.0 1.6

10 -37.2 0.64 2.29 1.65 506.2 5.5 5.5 0.526 0.66 0.526 1.4 0.8 1.4
II 37.2 2.29 3.94 1.65 506.2 5.5 5.5 0.526 0.66 0.526 1.4 0.8 1.4
12 -31.2 3.94 5.59 1.65 228.3 4.1 4.1 0.506 0.66 0.506 1.2 0.7 1.2
13 0.0 5.59 7.41 1.82 31 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0

Element configuration 15
ply eo z z, t E" E" E,l V12 "'23 "'13 Gil G2l G13

I 0.0 -10.29 -8.77 1.52 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0
2 -30.3 -8.77 -7.88 0.89 774.0 7.5 7.5 0.544 0.66 0.544 1.6 0.9 1.6
3 30.3 -7.88 -6.99 0.89 773.7 7.5 7.5 0.544 0.66 0.544 1.6 0.9 1.6
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4 -36.3 -6.99 -5.72 1.27 801.8 7.7 7.7 0.546 0.66 0.546 1.6 1.0 1.6
5 36.3 -5.72 -4.45 1.27 801.8 7.7 7.7 0.546 0.66 0.546 1.6 1.0 1.6
6 -36.3 -4.45 -3.18 1.27 801.8 7.7 7.7 0.546 0.66 0.546 1.6 1.0 1.6
7 36.3 -3.18 -1.91 1.27 802.0 7.7 7.7 0.546 0.66 0.546 1.6 1.0 1.6
8 -36.3 -1.91 -0.64 1.27 801.8 7.7 7.7 0.546 0.66 0.546 1.6 1.0 1.6
9 36.3 -0.64 0.64 1.27 801.8 7.7 7.7 0.546 0.66 0.546 1.6 1.0 1.6

10 -36.3 0.64 2.29 1.65 506.2 5.5 5.5 0.526 0.66 0.526 1.4 0.8 1.4
II 36.3 2.29 3.94 1.65 506.2 5.5 5.5 0.526 0.66 0.526 1.4 0.8 1.4
12 -30.3 3.94 5.59 1.65 228.3 4.1 4.1 0.506 0.66 0.506 1.2 0.7 1.2
13 0.0 5.59 8.31 2.72 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0

Element configuration 16 (( = 0, the tire crown)
ply rr z Zl t Ell E22 En V12 \'23 VI] Gil Gn Gu

I 0.0 -11.75 -10.23 1.52 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0
2 -29.8 -10.23 -9.34 0.89 774.3 7.5 7.5 0.544 0.66 0.544 1.6 0.9 1.6
3 29.8 -9.34 -8.45 0.89 773.4 7.4 7.4 0.544 0.66 0.544 1.6 0.9 1.6
4 -35.8 - 8.45 -7.18 1.27 801.8 7.7 7.7 0.546 0.66 0.546 1.6 1.0 1.6
5 35.8 -7.18 -5.91 1.27 801.8 7.7 7.7 0.546 0.66 0.546 1.6 1.0 1.6
6 -35.8 -5.91 -4.64 1.27 801.8 7.7 7.7 0.546 0.66 0.546 1.6 1.0 1.6
7 35.8 -4.64 -3.37 1.27 801.8 7.7 7.7 0.546 0.66 0.546 1.6 1.0 1.6
8 -35.8 -3.37 -2.1 1.27 802.0 7.7 7.7 0.546 0.66 0.546 1.6 1.0 1.6
9 35.8 -2.1 -0.83 1.27 801.8 7.7 7.7 0.546 0.66 0.546 1.6 1.0 1.6

to -35.8 -0.83 0.83 1.65 506.2 5.5 5.5 0.526 0.66 0.526 1.4 0.8 1.4
II 35.8 0.83 2.48 1.65 506.2 5.5 5.5 0.526 0.66 0.526 1.4 0.8 1.4
12 -29.8 2.48 4.13 1.65 228.3 4.1 4.1 0.506 0.66 0.506 1.2 0.7 1.2
13 0.0 4.13 7.25 3.12 3.1 3.1 3.1 0.49 0.49 0.49 1.0 1.0 1.0


